If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+39x-36=0
a = 3; b = 39; c = -36;
Δ = b2-4ac
Δ = 392-4·3·(-36)
Δ = 1953
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1953}=\sqrt{9*217}=\sqrt{9}*\sqrt{217}=3\sqrt{217}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(39)-3\sqrt{217}}{2*3}=\frac{-39-3\sqrt{217}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(39)+3\sqrt{217}}{2*3}=\frac{-39+3\sqrt{217}}{6} $
| _2(4a+1)_8=3(2a_1)_7a | | X*(2x+3)-x=3x+5 | | 9+10=x-3 | | 4x=1/2(9x+26-35) | | 6^x=22 | | 3/8w=77/8 | | .7m=6.3 | | 4x+20+2(x–7)=0 | | 5b+12=52 | | 2/3y+3=11 | | 15x=12x+16 | | 2+4+4x15= | | 2x-3(x-2)+8=7 | | 25x-200=3350 | | 5(x+3)=2(5x-5) | | 2x+5x=6x-2x | | 122x*x=x | | -5=x-(-4) | | 0x-x=x | | 4x-(2x-x)=9 | | 8.8^2x=90 | | 6(x-11)=2(3x+8 | | 3(y+6)=8y+15.5y | | 2x+13+6(x-5)=0 | | x-(.2x)=18 | | -3x^2+×^3=4x | | 8x−22=−70 | | -3+8(x-2)=15x+5-7x | | 7(x+3)=4x-3 | | x+3/4+5(7x+9)/3=3(4x+3)/12-7/2 | | -6(x)-7=-1(-9+2x | | x-2/3=4x |